
本书是一部面向初学者的搜索和推荐系统实战宝典。多位资深专家融合自己丰富的工程实践经验,一方面,精准地介绍了搜索和推荐系统的理论基础、工作原理和常见架构;一方面,深地讲解了机器学习、深度学习、自然语言处理等AI技术在搜索和推荐系统中的应用场景、主要算法及其实现、工程实践案例。 全书一共12章,分为 四大部分。 *部分(第 1 ~ 3 章) 搜索和推荐系统基础 首先介绍了概率统计与应用数学的基础知识,然后介绍了搜索和推荐系统的常识,*后介绍了知识图谱的基础理论。 第二部分(第 4 ~ 6 章) 搜索系统原理与架构 首先讲解了搜索系统的架构和原理,帮助读者了解搜索系统的组成、工作原理以及知识图谱在搜索系统中的应用;其次讲解了搜索系统中涉及的基本模型、机器学习以及深度学习算法;*后讲解了评价搜索系统的指标体系。 第三部分(第 7 ~ 9 章) 推荐系统原理与架构 首先讲解了推荐系统的架构和原理;其次讲解了推荐系统中涉及的线性模型、树模型以及深度学习模型;*后讲解了评价推荐系统的指标体系。 第四部分(第 10 ~ 12 章) 实战应用 首先介绍三种常见的搜索引擎工具,包括 Lucene、Solr和Elasticsearch;其次讲解了搜索系统和推荐系统的应用;*后介绍了如何充分结合AI与工程在工业界发挥作用。<br/>【推荐语】<br/>适读人群: 搜索和推荐系统的初中级读者;自然语言处理的初中级读者及爱好者;机器学习的初中级读者及爱好者。 NO.1 作者资深 作者均是有多年经验的搜索、推荐、AI方面的技术专家,精通各种算法 NO.2 引领趋势 深讲解DL、ML、NLP等AI技术和算法在搜索和推荐中的应用 NO.3 精准讲解 针对性讲解搜索和推荐门数学基础、原理、架构、算法等核心知识 NO.4 零基础门 搜索、推荐、AI零基础的读者也能快速掌握基本理论知识和常用实践方法 NO.5 注重实战 包含大量常见架构和实用算法,以及多个搜索、推荐和广告方面的综合案例 本书荣获51CTO 2021年度“受读者喜爱的IT图书”奖。 <br/>【作者】<br/>刘宇 清华大学硕士,现就职于一家跨境电商公司,任技术总监,主要负责该公司搜索推荐业务以及广告的相关技术发。目前工作的重是算法在搜索系统、推荐系统、对话系统等具体业务场景下的实际应用。对机器学习、深度学习、大数据应用与发等颇有研究。合著有《聊天机器人:门、阶与实战》一书。 赵宏宇 本科毕业于东北大学;研究生毕业于RIT,主修AI方向。现就职于猎聘网,主要负责猎聘网推荐排序相关的工作。 刘书斌 本科毕业于东北大学,现就职于美团,资深系统发工程师。曾在唯品会任职,主要负责搜索工程的架构设计与实现等相关工作,在ElasticSearch方面有丰富的工程实践经验。 孙明珠 硕士毕业于南京航空航天大学,现就职于猎聘网,担任高级算法工程师,负责查询理解、解析、扩展等NLP相关的工作。<br/>
評論0