
本书围绕股票大数据挖掘技术展,主要介绍数据挖掘的方法及其在股票大数据上的实战应用。在1~3章中首先介绍数据挖掘的基本概念、常用算法和工具、大数据炒股、股票时间序列、量化投资、股票数据的获取等;在4~10章中,每一章根据股票挖掘的不同目标,介绍相关的数据挖掘算法,同时基于对基础算法的优劣势分析,提出适用于股票场内实盘交易全景数据分析的新方法,结合新方法在股票挖掘平台上的实现对股票的操作行实战解析。具体包括:分类方法及股票卖的判断;相似/相关匹配方法及股票走势的预测;动态时间规整相似股票判断与投资组合;马尔科夫模型与股票盘面强弱状态的判断;关联规则与股票间的延时涨跌联动;n-gram模型与股票的幅值组合关系;深度学习与循环滚动预测等。<br/>【推荐语】<br/>本书围绕股票挖掘所构建的知识体系非常全面完善。在技术上,不仅包含了数据挖掘中常见的方法,如匹配方法、关联分析、分类、聚类、预测、时间序列分析等,还包括自然语言处理方法、深度学习方法、舆情分析方法、行为金融学心理学等方法。在数据应用上,不仅包含了对场内每笔成交数据的分析,还包括财务数据、新闻数据、股吧论坛、机构研报、用户行为等方面的分析。<br/>
点点赞赏,手留余香
给TA打赏
評論0