
数据挖掘旨在发现蕴含在数据中的有价值的数据模式、知识或规律,是目前非常热门的研究领域。理解数据挖掘模型的原理、方法并熟练掌握其实现技术是数据挖掘从业者的能力。 本书从理论模型和技术实战两个角度,全面讲述数据挖掘的基本流程、模型方法、实现技术及案例应用,帮助读者系统地掌握数据挖掘的核心技术,培养读者从事数据挖掘工作的基本能力。全书共12章,主要内容包括数据探索、数据预处理、特征选择、基础分类模型及回归模型、集成技术、聚类分析、关联规则分析、时间序列挖掘、异常检测、智能推荐等。除第1章、第2章外,本书以一章对应一个主题的形式完整描述相应主题的数据挖掘模型,简洁、清晰地介绍其基本原理和算法步骤,并结合Python语言介绍数据挖掘模型的实现技术,同时结合案例分析数据挖掘模型在数据挖掘中的应用。此外,书中还通过大量的图、表、代码、示例帮助读者快速掌握相关内容。 本书适合作为相关专业本科生和研究生的数据挖掘课程的教材,也可以作为数据挖掘技术爱好者或从业者的门参考书。<br/>【推荐语】<br/>1.本书在内容上,数据挖掘模型理论原理与数据挖掘实现并重,实现二者有机结合。 2.本书基于Python语言介绍模型的实现方法,案例丰富,图文并茂,适合本科数据挖掘课程的教学。<br/>【作者】<br/>为高等院校计算机科学与技术、数据科学与大数据及相关专业的数据挖掘课程教材,也可作为数据挖掘相关从业者的参考用书。<br/>
点点赞赏,手留余香
给TA打赏
評論0