
本书介绍在嵌式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等。并在此基础上介绍了信号处理层面的优化,包括AI推理算法及基于神经网络的AI算法训练-推理联合的优化理论与方法。其中信号处理层面优化包括了基于线性代数的快速近似算法、基于多项式的快速卷积构造技术、基于数据二制结构的快速乘法算法等;在AI推理层面,介绍了机器学习推理模型共性结构、运算图中各个算子的计算优化途径;另外对基于神经网络AI算法,阐述了如何将推理阶段的运算量约束以及底层数据量化约束加训练代价函数,从算法训练端减少运算量以提升AI嵌式系统的运行效率;此外本书还通过多个自动搜索优化参数并生成C代码的例子介绍了通用的嵌式环境下机器学习算法自动优化和部署工具发的基本知识;本书通过应用例子和大量代码说明AI算法在通用嵌式系统中的实现方法,力求让读者在理解算法的基础上,通过实践掌握高效的AI嵌式系统发的知识与技能。<br/>【推荐语】<br/>适读人群: 本书可作为嵌式领域工程技术人员、机器学习算法的底层算法软件发人员的参考书,也可作为计算机、电子信息、自动控制等相关专业高年级本科学生的参考教材。 配套PPT 代码 数据获取方式: 1、微信关注“华章计算机” 2、在后台回复关键词:69325 一、本书面向人工智能的嵌式应用,涵盖了基于运算量,内存,功耗等多维度的机器学习算法优化理论与技术。从算法底层单元到机器学习算法训练-推理联合优化及自动优化部署算法等方面行阐述,并结合通用嵌式处理器行了验证。本书集机器学习算法优化理论和应用实践为一体,为实现高效的人工智能嵌式系统提供了基础理论与方法。 二、本书作者常年从事嵌式教学与研究,书中的内容凝练了他们长期从事人工智能算法研究与系统设计的研究与经验,为人工智能应用普及提供了详实的学习和研究指南。 三、本书配套的PPT、源代码和训练数据均可下载并持续更新。 四、作者荣获51CTO 2021年度“受读者喜爱的IT图书作者”奖。本书荣获51CTO 2021年度“受读者喜爱的IT图书”奖。<br/>【作者】<br/>应忍冬 上海交通大学电子信息与电气工程学院副教授,硕士生导师。长期从事嵌式系统和数字电路教学与科研工作。主要研究领域包括数字信号处理VLSI架构、3D视觉信号处理、类脑智能算法及嵌式实现技术等。主持或参加过多项国家重科研项目,在数字信号处理理论和工程实现方面拥有丰富经验。 刘佩林 上海交通大学电子信息与电气工程学院教授,博士生导师。研究领域包括音频、视频、3D信号处理与智能分析,面向机器人的环境感知、人机交互、定位与导航,以及类脑计算与低功耗电路设计等。2017年起任上海交通大学类脑智能应用技术研究中心主任。<br/>
評論0