
本书全面介绍了数据架构与数据建模的相关知识,全书分为4篇,共16章。 第1~3章为数据架构基础篇,介绍了企业架构、数据架构及数据模型的基础概念。第4~9章为数据模型设计篇,介绍了如何通过数据模型记分卡规范化数据模型设计,以及经典数据建模方法论,包括范式建模、维度建模、Data Vault建模、统一星型建模。第10~12章为数据模型落地篇,介绍了在企业中如何实现多人协作构建模型、如何管控数据模型、数据模型数据与数据标准,以及元数据如何形成数据治理闭环。第13~16章为行业数据模型篇,分别介绍了证券、保险、教育、航空业的数据架构及数据模型。 本书既可以作为数据建模人员、数据发人员的学习用书,也适合非IT专业但对数据有强烈兴趣的业务人员使用,还可以作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。<br/>【推荐语】<br/>(1)讲解企业数据架构、数据模型基础概念,以及经典数据建模方法论。 (2)全面介绍数据模型从设计到落地及管控等方面的细节。 (3)提供证券、保险、教育、航空业的数据架构及数据模型的案例和实践路径,为政企数字化转型提供参考。<br/>【作者】<br/>王琤,Datablau数语科技创始人兼CEO。 具有近二十年数据管理经验,曾任CA ERwin全球研发负责人,曾服务过美国银行(BOA)、SunTrust、AT&T、壳牌等世界500强企业,参与过中国建设银行、华为、南方电网、中国人寿、中信集团等大型企事业单位的数据治理建设。现为国资委数据要素专家组成员,DAMA China数据架构、数据模型专家委员会牵头人,信通院数据资产专家委员会成员,Open Group成员,复旦大学、北京航空航天大学客座讲师,并有多项专利、论文发表于IEEE等机构。<br/>
点点赞赏,手留余香
给TA打赏
評論0