Transformer自然语言处理实战:使用Hugging Face Transformers库构建NLP应用pdf+epub

内容查看
查看价格20 元(100 台币TWD)
Transformer自然语言处理实战:使用Hugging Face Transformers库构建NLP应用pdf+epub

本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。着深挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。<br/>【推荐语】<br/>自Transformer在2017年发布以来,自然语言处理领域就迈了 一个全新的时代。以Transformer为基础的模型,不断推动着自 然语言处理技术的步与革新。如今随着ChatGPT的发布与流行,Transformer也被越来越多的人所了解和使用。 本书以Hugging Face Transformers库为基础,旨在向读者介绍Transformer模型的基础知识和快速门方式,帮助读者完成训练和扩展。三位作者都是Hugging Face Transformers的创建者,深谙Transformer的原理与架构,将通过实际案例“手把手”地帮助读者构建各种自然语言处理任务,并不断挖掘Transformer的无限潜力,从而实现更广泛的应用和创新。 通过本书,你将: ? 以NLP领域最具代表性的任务(文本分类、命名实体识别和问答系统)为例,学习构建、调试和优化Transformer模型。 ? 了解Transformer如何应用于跨语言迁移学习。 ? 学习如何在标注数据稀缺的场景中应用Transformer。 ? 使用蒸馏、剪枝和量化等技术优化Transformer。 ? 学习如何对Transformer做分布式并行训练。<br/>【作者】<br/>Lewis Tunstall是Hugging Face机器学习工程师,致力于为NLP社区发实用工具,并帮助人们更好地使用这些工具。 Leandro von Werra是Hugging Face机器学习工程师,致力于代码生成模型的研究与社区推广工作。 Thomas Wolf是Hugging Face首席科学官兼联合创始人,他的团队肩负着促AI研究和普及的使命。<br/>

点点赞赏,手留余香 给TA打赏
0

評論0

支持多种货币
支持多种货币付款,满足您的付款需求
7天无忧退换
安心无忧购物,售后有保障
专业客服服务
百名资深客服7*24h在线服务
发货超时赔付
交易成功极速发货,专业水准保证时效性
顯示驗證碼

社交帳號快速登錄