
本书提供了OpenCV与CUDA集成以实现实际应用的详细概述。首先介绍使用CUDA行GPU编程的基础知识。然后,通过一些实际的例子讲解如何利用GPU和CUDA实现OpenCV加速。一旦掌握了核心概念,读者将熟悉如何在NVIDIA Jetson TX1上部署OpenCV应用程序,该应用程序在计算机视觉和深度学习应用程序中非常流行。本书的*后几章解释了PyCUDA,这是一个Python库,它利用CUDA和GPU的强大功能来加速。在本书的*后,读者将通过本书的实践方法增强计算机视觉应用程序。<br/>【推荐语】<br/>本书是OpenCV发人员的指南,手把手教你使用OpenCV和CUDA实现GPU加速的计算机视觉项目发,帮你快速掌握利用GPU实时处理复杂图像数据的高效技术。 全书共11章,第1章介绍CUDA架构及应用;第2章介绍如何使用CUDA为GPU编写程序;第3章介绍如何从CUDA程序中调用线程,以及多个线程如何相互通信;第4章介绍CUDA streams和CUDA events等高级概念;第5章介绍在所有操作系统中安装支持CUDA的OpenCV库;第6章讲解如何使用OpenCV编写基本的计算机视觉操作,如像素级的图像操作、过滤和形态学操作;第7章介绍使用OpenCV和CUDA加速一些实际计算机视觉应用程序的步骤;第8章介绍如何在Jetson Tx1嵌式平台上安装OpenCV;第9章介绍如何在Jetson TX1上部署计算机视觉应用程序 ;第10章介绍PyCUDA;第11章讲解如何使用PyCUDA编写程序。<br/>【作者】<br/>包米克·维迪雅(Bhaumik Vaidya)是一位经验丰富的计算机视觉工程师和导师。他在OpenCV库,尤其是解决觉计算机视觉问题方面做了大量工作。他是大学硕士项目的金牌得主,目前正在攻读计算机视觉算法加速方面的博士学位。他指导了许多计算机视觉和超大规模集成(VLSI)方面的项目。他曾在VLSI领域做过ASIC验证工程师,对硬件架构也有很好的了解。他在声誉良好的期刊上发表了许多研究论文。他和他的博士导师还获得了英伟达Jetson TX1嵌式发平台的研究资助。<br/>
評論0